706 research outputs found

    Parametric study of non-periodic and hybrid auxetic bending-active gridshells

    Get PDF
    This paper presents a design method of Auxetic Bending-Active Gridshells (ABAGs), which are curved surfaces generated from the initial flat grid with 2-dimensional auxetic patterns. One of the mechanical properties of ABAGs is that a dome-like shape of a curved surface can be easily obtained by bending a grid due to negative Poisson's ratio for in-plane deformation. Shapes of auxetic patterns are relevant to Poisson's ratio. Non-periodic and/or hybrid 2-dimensional auxetic patterns are developed for designing the initial flat grid of ABAGs. Shape parameters are the sizes of each plane unit for tuning its reentrant pattern, and two types of reentrant shapes are mixed on an initial flat grid. Using the non-uniform patterns, we can obtain an asymmetric and more complex free-form surface of ABAGs than those composed of a uniform reentrant pattern. Discrete Gaussian curvature at each node on a curved surface is computed for quantitatively evaluating the properties of shapes of the obtained surfaces. Possibility of ABAGs as a new design tool is demonstrated by showing that various shapes are generated through large deformation analysis with the forced displacements at the supports

    Application of tensor network method to two dimensional lattice N=1\mathcal{N}=1 Wess-Zumino model

    Full text link
    We study a tensor network formulation of the two dimensional lattice N=1\mathcal{N}=1 Wess-Zumino model with Wilson derivatives for both fermions and bosons. The tensor renormalization group allows us to compute the partition function without the sign problem, and basic ideas to obtain a tensor network for both fermion and scalar boson systems were already given in previous works. In addition to improving the methods, we have constructed a tensor network representation of the model including the Yukawa-type interaction of Majorana fermions and real scalar bosons. We present some numerical results.Comment: 8 pages, 4 figures, talk presented at the 35th International Symposium on Lattice Field Theory (Lattice 2017), 18-24 June 2017, Granada, Spai

    暗号要素技術の一般的構成を介した高い安全性・高度な機能を備えた暗号要素技術の構成

    Get PDF
    Recent years have witnessed an active research on cryptographic primitives with complex functionality beyond simple encryption or authentication. A cryptographic primitive is required to be proposed together with a formal model of its usage and a rigorous proof of security under that model.This approach has suffered from the two drawbacks: (1) security models are defined in a very specific manner for each primitive, which situation causes the relationship between these security models not to be very clear, and (2) no comprehensive ways to confirm that a formal model of security really captures every possible scenarios in practice.This research relaxes these two drawbacks by the following approach: (1) By observing the fact that a cryptographic primitive A should be crucial for constructing another primitive B, we identify an easy-to-understand approach for constructing various cryptographic primitives.(2) Consider a situation in which there are closely related cryptographic primitives A and B, and the primitive A has no known security requirement that corresponds to some wellknown security requirement (b) for the latter primitive B.We argue that this situation suggests that this unknown security requirement for A can capture some practical attack. This enables us to detect unknown threats for various cryptographic primitives that have been missed bythe current security models.Following this approach, we identify an overlooked security threat for a cryptographic primitive called group signature. Furthermore, we apply the methodology (2) to the “revocable”group signature and obtain a new extension of public-key encryption which allows to restrict a plaintext that can be securely encrypted.通常の暗号化や認証にとどまらず, 複雑な機能を備えた暗号要素技術の提案が活発になっている. 暗号要素技術の安全性は利用形態に応じて, セキュリティ上の脅威をモデル化して安全性要件を定め, 新方式はそれぞれ安全性定義を満たすことの証明と共に提案される.既存研究では, 次の問題があった: (1) 要素技術ごとに個別に安全性の定義を与えているため, 理論的な体系化が不十分であった. (2) 安全性定義が実用上の脅威を完全に捉えきれているかの検証が難しかった.本研究は上記の問題を次の考え方で解決する. (1) ある要素技術(A) を構成するには別の要素技術(B) を部品として用いることが不可欠であることに注目し, 各要素技術の安全性要件の関連を整理・体系化して, 新方式を見通し良く構成可能とする. (2) 要素技術(B)で考慮されていた安全性要件(b) に対応する要素技術(A) の安全性要件が未定義なら, それを(A) の新たな安全性要件(a) として定式化する. これにより未知の脅威の検出が容易になる.グループ署名と非対話開示機能付き公開鍵暗号という2 つの要素技術について上記の考え方を適用して, グループ署名について未知の脅威を指摘する.また, 証明書失効機能と呼ばれる拡張機能を持つグループ署名に上記の考え方を適用して, 公開鍵暗号についての新たな拡張機能である, 暗号化できる平文を制限できる公開鍵暗号の効率的な構成法を明らかにする.電気通信大学201

    A 3-dimensional elastic beam model for form-finding of bending-active gridshells

    Get PDF
    This research is partly supported by SPIRITS program 2017 of Kyoto University.In this paper, we present a 3-dimensional elastic beam model for the form-finding and analysis of elastic gridshells subjected to bending deformation at the self-equilibrium state. Although the axial, bending, and torsional strains of the beam elements are small, the curved beams connected by hinge joints are subjected to large-deformation. The directions and rotation angles of the unit normal vectors at the nodes of the curved surfaces in addition to the translational displacements are chosen as variables. Based on the 3-dimensional elastic beam model, deformation of an element is derived from only the local geometrical relations between the orientations of elements and the unit normal vectors at nodes without resorting to a large rotation formulation in the 3-dimensional space. Deformation of a gridshell with hinge joints is also modeled using the unit normal vectors of the surface. An energy-based formulation is used for deriving the residual forces at the nodes, and the proposed model is implemented within dynamic relaxation method for form-finding and analysis of gridshells. The accuracy of the proposed method using dynamic relaxation method is confirmed in comparison to the results by finite element analysis. The results are also compared with those by optimization approach for minimizing the total potential energy derived using the proposed formulation
    corecore